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1 Summary

This grant was used to buy a tunable continuous wave laser source and beam diagnos-
tic package that is now being used to characterize the spectral response of photorefractive
materials and photonic bandgap structures. Devices made of such structures that are incor-
porated into our unique fibers (made in our laboratory) are also now being characterized.
Our laboratory is active in DOD and private-sector-sponsored interdisciplinary research
that spans materials processing, characterization, and device demonstration with particu-
lar emphasis on all-optical devices such as optical limiters, which are based on photonic
fibers and photorefractive fibers. The experiments will aid in understanding the physical
properties of materials, how they are affected by processing, and how the operation of de-
vices is influenced by processing and material composition. Furthermore, this equipment
is being used to enhance the learning experience of the half dozen undergraduate students
from physics, engineering and materials science along with several graduate students and
post docs who routinely use this equipment in their research.
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Figure 1: Cross-sectional view of a single-mode polymer optical fiber with embedded electrodes.
The size of the core and electrodes has been exaggerated in this illustration.

2 Research Areas

2.1 Electrooptic Fibers

Figure 1 shows a schematic representation of the cross-section of a single mode electro-optic
fiber that we were making in our laboratory at the time the original proposal was written.
The core consists of a dye-doped polymer which gives rise to the elevated refractive index
and is the source of the nonlinearity. The indium electrodes are compatible with the low
processing temperature which is required when using molecular dopants. The electrodes
can be used both for poling the material and for electrooptic modulation.

2.2 Photoisomerization

We made the major discovery that using the photoisomerization mechanism in a polymer
optical fiber core, optical limiting can be observed without the need for electrodes. (This
work is funded by AFOSR.) In the photoisomerization mechanism, the refractive index of
the material decreases as the intensity increase. To implement optical limiting in a polymer
optical fiber, we have developed a new technique that we call mode-cut optical limiting (M-
COL). It works as follows. As the refractive index of the multimode core decreases, the
number of waveguide modes that are supported decreases. As such, some of the modes are
removed and the intensity that is transmitted down the guide saturates. The modes that
are cut out of the wave guide are launched into the cladding. To prevent these radiated
modes from making it to the end face of the fiber, the cladding is painted black to absorb
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Figure 2: a) Experimental setup for mode cut optical limiting; (b) a fiber with the cladded painted
black; and (c) a photo of the waveguide mode in a 50um core fiber.

the light. The new equipment purchased under this grant has been used to perform these
measurements.

Figure 2a shows the experimental setup. The incident intensity is measured by reflecting
a small amount of the light from the laser into a detector. The transmitted intensity is
then measured as a function of the incident intensity. Figure 2b shows the fiber that was
used for these experiments. The cladding is painted black. 2c¢ shows the light intensity at
the output of the fiber 300um diameter cladding and 50um diameter core.

Figure 3 shows the transmitted power through the core as a function of incident power.
Above about 1kW/cm?, the output power begins to saturate. While these results are for
a continuous wave (CW) incident beam, we have seen that the onset of limiting occurs at
about 35ms after the laser is turned on and saturates after about 350ms. Work to identify
new materials and to make the core smaller (i.e. stronger mode cut-off at lower intensities)
is in progress. '

2.3 Photonic Fibers

"We have been making a variety of photonic crystal structures in polymer optical fiber and
dye-doped polymer optical fiber. (This work is supported by ARO.) These include the so-
called “holey fibers,” which prorogate light down the length of the fiber, as well as photonic
crystal structures, which are illuminated transverse to the fiber axis. Figure 4a shows a
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Figure 3: Mode cut optical limiting in a polymer optical fiber.




Figure 4: Mode cut optical limiting in a polymer optical fiber.

preform (end view and side view) of DR1 dye-doped polymer with an array of indium
electrodes. The dye is nonlinear through the photoisomerization mechanism and the metal
array provides the filtering. Since the refractive index depends on the intensity, the filtering
properties depend on the intensity. Figure 4b shows an actual fiber that was pulled from
such a preform. Figure 4c shows the fiber end being observed with a microscope and Figure
4d shows a side view of the fiber under a microscope. Work is in progress to improve the
fiber quality. The equipment purchased by the DURIP award is being used to characterize
these structure.

2.4 Other projects

Many other experiments are using the equipment purchased with this grant. They include
z-scan and t-scan of dye-doped films, time resolved self-defocusing, photochromism, pho-

torefraction, and others. More than a dozen publications will result from these experiments
in 2002 alone.

3 Purchased Equipment

Purchased Equipment Items:
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